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Abstract

Autonomously landing a spacecraft safely in a hazardous area on a planet is a critical mission
goal. To help achieve this goal, we have developed a fast algorithm to detect hazards on a
planetary surface using a single image from a descent spacecraft camera. This paper proposes
a general approach of segmentation and classification for hazard detection and describes an
implementation of this approach. The implemented algorithm uses local intensity clustering to
segment the image into regions and then classifies these regions as hazards or part of the surface.
We have tested our methodology using synthetic terrain images as well as real camera images.

1 Introduction

The ability to land a spacecraft autonomously and safely in a moderately hazardous area on a
planet is becoming extremely important to the success of future planetary exploration missions.
Scientifically interesting areas on the planet are generally areas that are hazardous to land in;
therefore, the ability to land in moderately hazardous areas is a necessity. Selecting a safe landing
site during the descent phase requires autonomy largely because the communications delay between
the spacecraft and a potential pilot on Earth is too long to allow real-time control. A more complete
motivation is provided by [7].

Autonomously landing a spacecraft safely on a planetary surface requires the ability to detect
and avoid hazards on the surface. An optical camera is one of several different types of sensors which
can be used to achieve this capability. While it does not explicitly provide range data like RADAR
or LIDAR sensors, it has several distinct advantages over these other sensors. A camera can have a
larger field of view, consumes less power, is lighter, has better resolution, and has fewer mechanical
components subject to failure. However, it also suffers from some of the same problems as LIDAR
and RADAR: dust in the atmosphere can occlude the surface, the data can be blurred by spacecraft
motion, including high frequency vibration of the spacecraft, and the data can be distorted by optical
and receiving characteristics. In addition, using a camera constrains the time of entry and descent to
the “daytime,” when the planet’s surface is illuminated by sunlight. Furthermore, most autonomous
navigation from image algorithms are, like most vision algorithms, computationally expensive and
too slow for real-time spacecraft descent.

1.1 Goal

The goal of the proposed algorithm is to detect safe landing sites on the surface in near real-time
(less than one second of processing time on flight hardware) using a single spacecraft mounted
camera. The criteria for a safe site is a set of requirements such as an area with rocks no larger
than a certain size and with a surface less than a certain slope. However, the requirements may also
include constraints such as not landing inside a crater with no feasible path for a planetary rover
traversal of a certain distance. A safe landing site is also characterized by the reachable area, which
is an elliptical area defined by the spacecrafts descent profile, its amount of fuel, the atmospheric



conditions, etc. The output of the proposed algorithm is a safety map and a certainty map, which
will then be integrated with the safety/certainty map derived from other sensors and the reachable
area [8].

Rather than trying to duplicate the information which can more easily be obtained by active
range sensors (RADAR/LIDAR), such as slope and roughness [9], we have attempted to extract
hazardous features from the image, such as rocks and craters. We are also only processing a single
camera image at a time to relax the reliance on more computationally expensive algorithms as well
as possibly erroneous spacecraft motion knowledge.

1.2 Possible Approaches

Image-based safe landing on Mars was considered by the Mars Program as summarized in [7]. The
approach proposed is to simply tile the image and calculate variance in each tile, assuming a low
variance corresponds to a safe area. While this method is not very quantitative, it is extremely fast
and simple. Another approach, proposed in [13] is to calculate slope by intelligently combining slope
from IP tracking and gray level shape from shading information and to calculate roughness using an
auto-correlation measure in a local window. Another multi-image approach is also proposed in [4]
using the homography transform on certain areas in an image to calculate slope and, as a by-product,
roughness.

Explicitly detecting features on a planetary surface has also been explored with several ap-
proaches, however most of these methods are designed to run offline, and can afford to be compu-
tationally expensive. Several different approaches are proposed in [2], [10], and [12]. Segmentation
and texture methods for rover navigation are also useful approaches. Using shadows to detect rocks
has been implemented in [6] and texture methods are proposed in [3].

2 Algorithm Description

Our approach to hazard detection is to quantitatively determine the size and abundance of hazards
in an area on the surface. To accomplish this, our general approach is to segment the image and
then classify the segmented regions as hazards or safe areas. While we have implemented a fast
and therefore relatively simple version of this algorithm, the concept is not limited to this specific
implementation. There are many alternate ways to segment the image and many ways to classify
the regions.

In our algorithm, local areas of the image are used to segment the image, and the segmented
regions are then classified as shadows, hazards, or surface areas. Hazards in the implemented case
are limited to rocks; however, this representation can be extended to other surface features such as
craters and cliffs. We also make use of approximate knowledge of the sun relative to the surface to
detect and classify hazards.

2.1 Segmentation

Rather than using a more computationally expensive texture segmentation method such as edge
flow [11] or Gabor filter based techniques [5], our algorithm implements a fast and simple intensity
based segmentation method. This segmentation method can also be extended to include texture
measures as well as more regions. Currently, to maintain a run-time of less than one second per
image (400x400 pixels), only shadows and a single class of “hazards” are segmented from a, surface
which is assumed to be slowly changing in intensity. Also, only the pixel intensity is considered
in the segmentation; however, the algorithm could include variance, entropy, or features extracted
from other local texture measures which may come from frequency analysis (Gabor filters, etc.).
The segmentation algorithm is a variant of the k-means clustering algorithm, where pixels are
clustered together based on their texture features. But rather than analyzing the entire image, the



clustering is performed on small, local areas in the image. This allows the background surface to
change slowly, while still extracting outliers from the surface.

'The k-means algorithm is an iterative technique (which is guaranteed to converge [1] but in an
undetermined number of iterations) for unsupervised classification of data points into k classes. The
algorithm selects the locally optimal k mean values in the space such that the distance of each data,
points to its nearest mean value is minimized using the following equation:

B =3 minlp: -
(2

where p; are the image data points, w; is the 5" mean for class j = 1..k, and F is the error value to
minimize with clusters.
Briefly, the general k-means procedure consists of the following steps:

e initialize k means (u; for j = 1..k).
¢ loop until AE is small:

— assign class labels:
lp; = argmin jp; — p;

where I, is the class label for point p;.

— calculate k means:

N,
M= ———Zi lpé
N,
where 1y is the new mean value for class [ and N; is the number of samples in class {

(I =1.k).

The k-means algorithm can be made extremely efficient in the simple, two-means case. Each
classification iteration in the k-means algorithm requires O(knm) or O(nm log(nm)); but since k = 2
for all cases, the algorithm runs in O(nm), with a small constant factor. Additionally, for small areas
and small k, the k-means algorithm converges in very few iterations.

Segmenting the image using local areas rather than globally, while adding a small overhead to
algorithm complexity, provides several advantages. It allows the assumption that only a few regions
exist in a small area to hold, so that the k-means algorithm can be made substantially faster. It also
allows the segmentation to be robust to a gradually changing surface: the difference in mean values
of outliers and the surface will tend to be higher if a local area is used. The overhead incurred by
using local areas is the overlap necessary to maintain consistency across the areas. For example, we
use an overlap (Az, Ay) of half of the area size (nxm) (which is based on the size of the largest
hazard expected in the image, but not particularly sensitive to this decision) so that a hazard which
may fall right on the border of one local area will fall in the center of the next area considered. This
can obviously be made smaller and still allow for sufficient overlap. Using the overlapping areas,
the run-time for a single iteration of the k-means algorithm is (amortized) O(knm 2 Aly), where the
variables are given in Figure 1 (a).

This method is effective and can be made efficient because of the prior knowledge of the surface.
But it relies on certain assumptions to work correctly. The main assumption of the segmentation
method is that hazards in a local area have a similar intensity (or all have visible shadows) and the
surface they are on is relatively uniform in intensity. While noise is eliminated by pre-filtering the
image with a smoothing function, a highly textured surface will still cause a false segmentation.

2.2 Classification

After the image is segmented, separated regions are classified as either part of the surface, a shadow,
or a hazard. Only the mean of the region is currently used to classify a region, however, other
texture measures such as variance could also be used.
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Figure 1: (a) Overlapping local regions for k-means segmentation, (b) Shadow projection to deter-
mine hazard width.

Regions classified as shadows are then used to determine the hazards that have caused them.
The method assumes an approximate knowledge of the sun angle, which could be inferred from the
spacecraft position and time of day or explicitly detected with a sun sensor. A detected shadow is
projected onto a line perpendicular to the azimuth angle of the sun (measured from the surface) to
estimate hazard size (Figure 1 (b)). The minimum and maximum points on the projection line give
an estimate of one dimension of size, while the maximum or minimum distance to the projection line
give an estimate to the other. While this is an overestimate, using the “thickness” of the shadow at
the maximum /minimum point can give a better estimate, as well as providing the third dimension
of size. The curvature of the shadow can also be used to differentiate concave and convex ob jects
(rocks versus craters), although in our case, size is generally sufficient to disambiguate the expected
hazards. The size and outline of the hazard is then approximated by a bounding box, defined by the
minima and maxima of the dimensions. This conservative estimate can be improved by attempting
to fit an ellipse to the detected dimensions, or by growing a region around an approximate center
of the hazard (inferred from the detected shadow). However, these methods tend to increase the
computational complexity of the algorithm, and, in this case, a conservative example was well suited
to the application.

Hazards, like shadows, are classified based on a segmented region’s mean value, which is signif-
icantly different from the surface mean intensity. For consistency in the size metric, the first size
dimension of detected hazards are labeled along an axis perpendicular to the azimuth angle of the
sun. Then the maximum or minimum distance from this dimension is used as the second dimension.
Again for consistency, a bounding box on the minimum and maximum of these two lines then defines
the rock size and outline. Determining a more precise size in this situation is easier because the
region is already defined, and a simple pixel count could be used.

2.3 Hazard Map Generation

Once hazards are detected, a size and abundance map are generated for input into a rule-based
system which combines the hazard maps of multiple sensors [8]. The size map is created from the
bounding boxes of the hazards, where each value in the bounding box is the area of the bounding
box. The abundance at any point is generated by calculating the number of unique hazards (defined
by their bounding box) which fall within a window around that point. The abundance map is then
created by finding the abundance at every point in the image (equivalent to a sliding window oper-
ation). This can be done efficiently by using the abundance at one point to calculate a neighboring
point — for a window sliding along a row, only the next and last column need to be checked for



(a) original image (c) rock detection

(d) size map (e) abundance map
dark (small) - light (large) dark (low) - light (high)

Figure 2: Example of (a) original image, (b) segmentation with local k-means, (c) rock detection
from segmentation and shadow projection, and (d) the generated size map, and (e) abundance map
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Figure 3: Hazard detection on a synthetic, helicopter, and Mars Pathfinder image



hazards entering or leaving the window.

3 Algorithm Testing

The implemented algorithm has been tested most thoroughly on synthetic terrain images from
simulated descent, but has also been applied to helicopter descent images and Mars Pathfinder
images. The algorithm works well on overhead synthetic terrain images (Figures 2 and 3) where
rocks with and without shadows are present. Initial testing with helicopter images (Figure 3)
on natural terrain with very few shadows is also very promising. Additionally, the algorithm is
moderately effective on the few horizontal Mars Pathfinder images (Figure 3) tested. While the
detection of rocks from shadows on horizontal images is less accurate, these images show that the
contrast of rock and surface intensity can be used as a distinguishing factor for parts of the Martian
terrain.

Eventually we would like to integrate the algorithm into a gantry/sandbox setup to simulate
descent conditions and test the dependence on sun angle and position. We then intend to actually
run the algorithm on a helicopter descent.

4 Future Work

The algorithm, while generally robust, can be extended in several ways, although subject to increased
computational complexity. Segmentation and classification can both be improved by using additional
texture measures (such as variance or frequency responses) or more clusters. Hazards can also be
differentiated by considering the shape of the shadow or the projected shadow. Additionally, rather
than relying on a known sun position, the angle could be estimated from shadow shapes.

5 Conclusion

In this paper, we describe a general approach for detecting hazards from a single planetary lander
camera image as well as a specific implementation of this approach. We use local intensity clustering
to segment the image and then classify segmented regions as shadows and hazards or part of the
surface. We then detect hazard sizes based on shadow size and sun angle or region size, and use this
information to generate maps corresponding to the size and abundance of hazards on the surface.
The experimental tests show that our algorithm is sufficiently fast and robust to enable an effective,
near real-time implementation on board a spacecraft.
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